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1. Summary 

Forecast verification, or “validation”, is the process of 
evaluating the quality of a numerical weather prediction 
(NWP and other types of weather prediction models e.g. 
NowCast) tool against real measurements, usually via 
analysis of statistics that characterize the relationship 
between forecast and observed weather variables of 
interest [1]. Depending on the attributes of the chosen 
dataset(s) in question, the data analyst will likely employ 
different sets of statistical approaches, which are 
detailed herein. Undertaking statistical validation studies 
thus enables one to determine the inherent value of a 
given NWP tool; when equipped with this intelligence, 
commercial businesses can make more-informed 
decisions toward accomplishing strategic objectives. 
 

2. Background 

Standard validation approaches have been established 
by within the global scientific community (e.g., the World 
Meteorological Organization, the U.S. National 
Oceanographic and Atmospheric Administration (NOAA), 
and the U.S. National Aeronautics and Space 
Administration) to promote consistency in forecast 
verification. Up front, it matters whether the target 
weather variable(s) typically take on “yes”/ “no” types of 
conditions (as in the case of precipitation occurrence–a 
“discrete” variable situation), as opposed to 
representing an infinite range of real numbers (e.g., 
near-surface temperature–a “continuous” variable 
situation). For both cases, there are several pieces of 
critical background for the data analyst to take into 
account before carrying out statistical validation.  
 
Gaps or interruptions to routine weather observations 
are common in the field of atmospheric data science, 
therefore quality control procedures are vital during the 
preliminary analysis and data-ingest production phases 
(prior to producing a weather forecast).  
 
As alluded to above, comparisons between numerical 
weather forecasts and observations (i.e., validation) can, 
and often should, involve an independent dataset to 
serve as a benchmark or statistical baseline. Moreover, 
since data from NWP systems and observation platforms 
may have different underlying resolution, initial data 

pre-processing can rectify differences in underlying units 
(e.g., to unintentional offsets between data samples). It 
may also be useful to enact data thresholding (e.g., to 
account for differing sensitivity of the chosen sample 
datasets), for example, by conditioning precipitation 
data on accumulation > 1 mm prior to analysis. These 
preliminary steps are essential precursors to validation. 
 

3. Validation Approaches 

3.1 Discrete Variables 

For discrete variables, contingency tables (Fig. 1) have 
proven to be highly effective analysis frameworks, as 
forecast output can be readily evaluated against 
observations for accuracy [2]. The analysis proceeds by 
summing up the number of times that the forecast and 
model agree (Hits and Correct Rejections), as well as 
when the forecast and observations do not agree (False 
Alarms and Misses). 
 

  Observed  

  Yes No 

Forecasted Yes Hits False Alarms 

 
No Misses 

Correct 

Rejections 

Figure 1. A traditional contingency table used for tabulating forecast-
observation outcomes.  

 
From these summaries, key performance indicators are 
Probability of Detection (POD) and False Alarm Ratios 
(FAR). The Critical Success  
 
Index (CSI) characterizes how often the forecast 
accurately identifies target event occurrence. As an 
extension, the Brier Skill Score (BSS) vets the model 
forecast and observation against a third independent 
source of ground truth, i.e., climatology. Then to handle 
issues with spatial or temporal mismatch between model 
forecast and observation output, the Fractions Skill Score 
(FSS) can be used (see Sec. 5 below). 
 

3.2 Continuous Variables 

For continuous variable validation, there exists a relevant 
set of statistics that a data analyst uses to potentially 
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reveal more detailed aspects of a forecast model’s skill 
[3]. These statistical metrics are chosen depending on 
the need to quantify either bias, the magnitude of the 
error between forecast and observation data, or the 
correlation (i.e., how well the forecasts track 
observations). Another set of statistical performance 
metrics are appropriate when the sample data 
distributions do not resemble the standard “Bell Curve” 
[4]. 
 

4. Case Study 

Tomorrow.io strongly believes in its mission to collect 
better data, create better models, and provide a superior 
set of forecast products. As part of that mission, 
considerable time and effort is invested in routine 
verification for quality assurance, ensuring that the 
company’s product suite meets technical specifications 
and maintains its position at the forefront of weather 
technology. 

Here, we present the results from a set of real-world 
validation experiments that illustrate several of the 
techniques that have been described herein. The sample 
data for this study were aggregated over four months in 
2019, at hourly intervals before being normalized to the 
same unit of measurement. 
 

 
 
Figure 2. NowCast (NC) hour-1 forecast (a) CSI and (b) FSS over the 
continental United States for five one-hour precipitation 
accumulation thresholds (≥ 0.01 in. (0.25 mm), ≥ 0.10 in. (2.54 mm), 
≥ 0.25 in. (6.35 mm), ≥ 0.50  in. (12.7 mm), and ≥ 1.0 in. (25.4 mm)). 
The NC data are validated using Stage-IV precipitation data from the 
National Centers for Environmental Prediction. Performance scores 
are shown for July (orange), August (green), September (pink), and 
October (blue) 2019. 

 
Five operational thresholds of Tomorrow.io’s NowCast 
precipitation accumulation were compared to NOAA’s 
flagship precipitation verification dataset; Figure 2 above 
shows that CSI and FSS metrics are well within the range 
of acceptance, as defined by NOAA’s Weather Prediction 
Center.  
 

5. Advanced Topics 

When validation involves comparatively high-resolution 
NWP output paired with observations, more-advanced 
validation approaches are sometimes warranted to 
mitigate potential “double penalty” issues [5]. The 
“double penalty” results when the forecast is penalized 
two times for correctly capturing a weather feature of 
interest, but displacing it relative to  
 
observations. “Neighborhood methods” set a boundary 
around the point-of-interest and seek to quantify the 
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fraction of local grid points that meet a specified event 
threshold.  
 
Then using the FSS metric provides concise accounting 
for the difference in neighborhood probability of 
occurrence for the event of interest. The question of 
whether a forecast model exhibits significant skill is 
reduced to evaluating how close the FSS comes to a value 
of 1.0–a perfect forecast. 
 

6. Closing 

Since it is very difficult to treat the various sources of 
uncertainty associated with human-only observations 
(e.g., people often only consider a limited spatial area 
“outside the window” or “at a given location on the 
property”), it is critical to report weather conditions or 
parameters based on actual instrument measurement 
prior to validation. Analysts conventionally use direct or 
indirect meteorological measurements (e.g., real-time 
precipitation vs. sky cover), which are then formatted 
properly for subsequent analysis according to 
community-approved discrete and continuous variable 
validation methods described above. With the 
information contained in this brief, stakeholders will be 
better equipped to execute fair, objective validation and 
thereby realize the quality and value of Tomorrow.io’s 
forecast products for their commercial operations and 
business decision-making purposes. 
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